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Abstract—Lubrication theory is applied to compute the deformation of two approaching particles suspended in a
Generalized Newtonian fluid with linear elastic theory estimating deformation and force on the particles with respect
to deformability 8. The relative viscosity of concentrated suspension with deformable particles in a Generalized New-
tonian fluid is obtained for a simple cubic array configuration by using the results of deformation and force for two
particles. Since the deformation of particles generates the freedom of moving particles geometrically, the suspension
with deformable particles shows shear thinning behavior.
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INTRODUCTION

The rheology of lughly concentrated blends has been studied ex-
permmentally by many mvestigators [Munstedt, 1981; Ellul et al.,
1995; Abdou-Sabet et al.,, 1996; Araki and White, 1998; Kim and
Chun, 1999; Moon et al, 2001] to understand the behavior of blend
during the process. However, a prominent barner to the use of poly-
mer blends and composite materials 1s the lack of adequate models
that capture the complex mnteraction between microstructure and
theology of these matenials duning processing. In detenmmng the
theological property of polymer blends, the most sigruficant fea-
tures are hydrodynamic mteraction between neighbormg particles
and deformation of perticles. Thus, we would like to focus on those
two phenomena to establish a useful model of suspension theology
with deformable particles.

Many mvestigators have been working on understandmg the hy-
drodynamic mteractions of highly concentrated systems of hard
spheres. Since the hydrodynamic mteractions between neighboring
particles are governed by lubrication foree, the relative viscosity of
concentrated suspension with Newtorsan fluid medium was devel-
oped from the rate of energy dissipation for two nearly touching
spherical rigid particles taking the spherical cell around particles
[Frankel and Acrivos, 1967]. Jarzebski [1981] and Tanaka et al.
[1980] extended to non-Newtorian flud medium using the same
method The stress between two particles was approximated as pres-
sure distribution by Taneka et al. [1980] while stress was estunated
as the shear contribution of deformation tensor m second mvariant
by Jarzebski [1981] clamming the more importance of elongation.
Jarzebski [1981] showed that the relative viscosity was lowered as
shear mdex n1 15 decreased owimg to the extensional motion of flud
at the surface of particles. Recently, the rheological behavior of con-
centrated suspension with rigid particles m Newtornan fluid was ex-
ammed with Stokesian dynamic simulations considermg only lubri-
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cation force as the mteractions of particles [Ball and Melrose, 1995,
1997, Catherall et al., 2000] as well as were mvestigated experimen-
tally by Lee et al. [1999] and So et al. [2001] showmg the shear thick-
enmg behavior due to clustering of particles caused by lubrication
force.

Local volume averaging [Batchelor, 1970] was used for averag-
mg stresslet so as to estimate the concentrated suspension viscosity
for a static periodic configuration mstead of spherical cell approxi-
mating the stresslet of suspension from lubrication force and vector
connecting center of two neighbormg rigid particles [van den Brule
and Jongschaap, 1991].

Suspended particles such as rubber or conducting drop can be
deformed by external force, e.g. hydrodynarmic mteraction between
particles or electric field [Ha and Yang, 2000]. The deformation
due to short range hydrodynamic force has been estunated for elastic
particles i Newtoruan fluid medm by Christensen [1970] and
Davis et al. [1986] combmed with Hertz contact theory [Landau
and Lifshitz, 1986]. Different than the suspension of hard spheres,
theologically shear thmnmg behavior 13 observed for the suspen-
sion of deformable particles smce deformation allows the mobility
of particles to mcrease geometrically [Loewenberg and Hinch, 1996].

In this paper we employ the volume averaging method to under-
stand the theological behavior of concentrated suspension with de-
formable particles suspended mn Newtonian as well as i non-New-
tomian fluid. However, it may be desirable to accomplish the dyn-
amic simulation of deformable particles to predict the relative vis-
cosity; the computational time 15 so tremendous that 1t will be worked
on 1 the next paper. A periodic configuration s therefore used m
estimating the relative viscosity of suspension with deformable par-
ticles.

In the following section, lubrication force and deformability be-
tween two rubber particles are derived before calculatmg the rela-
tive viscosity of suspension along with the brief description of num-
erical scheme. Then the results of numerical computation for two
deformable are presented for various shear mdices and deformabil-
ities 8. In the final section the relative viscosity of deformable par-
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Fig. 1. Schematic of two deformable particles.

ticles 1s estimated from the results of previous section.
LUBRICATION THEORY AND DEFORMABILITY

Two spherical elastic particles with radns a are approachmg each
other as shown m Fig. 1. As they get closer, the pressure between
them is mcreased inducmg the stronger stress on the surface of par-
ticles. The curvature of deformed particle 1s approximately expressed
as

z(r,t) =h(t) +;—2a +d(z,t) ¢}

Here h(t) 15 the hypothetical distanice of two deformable particles
on the Ime connecting the centers of particles shown as a solid lime.
Inn other words, it 1s the distance of two particles assuming no de-
formation occurs. For deformable particles, variable d(z; t) 1s deter-
mined by its elastic properties, e.g. Poisson ratio v and Young’s mod-
ulus E. The total particle deformation d m narrow gaps between two
approaching rubber particles suspended in Generahzed Newtonian
fluid 1s evaluated as follows with the Hertz contact theory of linear
elasticity.
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where K 15 the consistent coefficient of power law flud, n 15 the
shear mdex and u 1s the relative velocity of two particles. The func-
tion ¢ m I, mvolves a complete elliptic mtegral of first kind and 1
given as follows.
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The bracketed mtegration term in (2) corresponds to the stress distri-
bution over the surface at time t, which 15 determined from the hy-
drodynarmic interaction of two particles. As seen m (2), the combi-
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nation of two physical phenomena, 1.e. lubrication effect and elastic
properties, allows us evaluate the deformation. By the couplmg of
continuity and momentum equation, the well-known lubrication
equation for the gap of two particles 1s expressed as

9z__1 3T _dp
at 12ur81']:r2 81‘1 )

Smce the deformation d(x, t) 13 mcorporated m curvature equation
as (1), deformation owmg to elasticity and lubrication force can be
combined mto the equation through (5). The force F on the two de-
formable particles 1s estimated from the stress distribution obtamed
from (5).

F =j0 G, (2m)rdr=2nKua'h * a (5) 5(n,8)

Jy(n,8) = (% ) j:[ r — F:(R',S)]l deleR (©)

In evaluatng normal stress G, only pressure P is included since
the magnitude of gradient of axial direction velocity w with respect
to z is much smaller, e.g. P~O(h™®) and (dw/dz)y-O(h™) for Newto-
mian flud The force equation 1s reduced to (7) with J,=3/4 when
the particles are rigid and flud medium 15 Newtoman, mplymg
that the magmitude of force 1s strongly dependent on the gap size h.

3 u
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A complete solution of the lubrication equation coupled with elas-
ticity theory can be evaluated by mumencal methods, e.g. finite dif-
ference, fimte element etc., as a function of tme. In this work, the
computation of mstant deformation and force acting on the surface
of deformed particles 1s enough to predict the relative viscosity for
a given configuration. Therefore, we calculated the d(r) with the
pressure distribution obtamed from two approachmng rigid spheres
as a first step, considermg the left side of (S5) as the relative velocity
of two particles. Consecutively, the newly obtamed pressure distri-
bution P(r) from the previous step 1s used for the evaluation of d(r).
This procecure 1s repeated until d(r) and P are converged Once mum-
encally converged d(r) and P 1s computed, the lubrication force writ-
ten i (6) 1s estimated numerically. Romberg mntegration 1s used to
calculate T, and I, precisely, changmg variables to avoid the smgu-
larity due to integrand.

SIMULATION RESULTS

The distribution of particle curvature, mtegration I, and lubrica-
tion forces are computed for Newtoman flud and a non-Newto-
mian fhud satisfying power law with shear index as 0.5, varymg de-
formability. In Figs. 2 and 4, surface curvature m the radial direc-
tion 1s plotted for several elastic parameters along with the pressure
distnbutions between two particles shown m Fig. 3 and 5. More
deformation occurs as deformability mereases. About 40% of gap
size h is deformed for 8=0.1, whereas almost no deformation is ob-
served for 8~107 as seen in Fig, 2. It is also shown that the most
deformation occurs at R=0, where the highest stress 1s applied, and
the extent of deformation 1 reduced as one moves along the radial
direction. The pressure distribution plots confirm fhis trend show-
mg that the pressures at the center are distributed discretely while
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Fig. 2. The distribution of particle curvature with Newtonian fluid
medium. The lines have different deformability 3 as shown
in legend.
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Fig. 3. Pressure distribution curves along the surface of deform-
able particle suspended in Newtonian fluid for different de-
formability 8. Scaled pressure I1 is defined as Ph’/|lua.

Fig. 4. The distribution of particle curvature with non-Newtonian
fluid medium with shear index as 0.5. The lines have dif-
ferent deformability & as shown in legend.

they are converged to almost same as R mcreases. Note that the pres-
sure 1s decreased as the deformation mcreases and deformability
mcreases. The stress acting on the surface of particles 1s already
relaxed mto the deformation resultmg m letting gap size bigger. The
pressure 1s therefore lowered as seen m Figs. 3 and 5 owmg to high

Fig. 5. Pressure distribution curves along the surface of deform-
able particle suspended in non-Newtonian fluid with shear
index as 0.5 for different deformability . Scaled pressure
IT is defined as P /Ku'*a" .

L

Fig. 6. J, with respect to deformability 3 for Newtonian fluid me-
dium. Solid line is the frend line expressed with power law.

&

Fig. 7. J, with respect to deformability 3 for non-Newtonian fluid
medium with shear index as 0.5. Solid line is the trend line
expressed with power law.

deformation of surface.

The most significant part of lubrication force 1s the computation
of mtegration J, as shown in Figs. 6 and 7. The analytical J, for a
rigid body 1 a Newtorian fhud 1s 0.75 as seen m (7) mplicitly. Since
the calculated force 1s used in predicting relative viscosity, the cor-
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Table 1. Power and coefficient for the trend line of J, in express-
ing J,=C8™. C, is the value of J, and m=0 when particles

are rigid

n 1 05
m 0.147 0.072
C 0.399 1.955
Co 0.750 2.626

relation function between J, and deformability is necessary on the
basis of simulation results to obtam the proper rheological relation-
ship of suspension with deformable particles such as polymer blends.
As deformability mncreases, T, 1s decreased followmg a power law.
The power and coefficients are listed i Table 1. The solid lines in
Figs. 6 and 7 represent trend lnes by power laws. Lubrication force
is proportional to h™* for deformable particles in Newtonian fluid
and is h™" for deformable particles in non-Newtonian power law
fluid with shear index as 0.5 while it is h™ and h™* respectively
for nigid particles. The dependency on h 1s shown slightly weaker
for deformable particles because force depends on h as well as de-
formed curvature of surface i integration I,.

It 15 worthwhile to see the effect of deformation on the lubrica-
tion force by a force ratio @ defined as the ratio of force with de-
formable particles and force with ngid particles. As @ departs from
uruty, the foree acting on the surface of deformable particles 1s less
then that on the rigid particles. In other words, the deformation oc-
curting generates more space between two particles resultg m less
pressure in the gap. Since the deformability 8 gets bigger and big-
ger, the force ratio @ 15 decreased as shown m Fig. 8. For the non-
Newtonian fluid medium with n=0.5, @ 1s changed about 15%,
whereas 1t 1 varied more than 25% for a Newtoruan fluid. It 1s noted
that the particles i Newtoruan fluid medium are more mmpacted
by deformation. Non-Newtoman fluds following the power law
mtrinsically have extensional motion during the process, which may
create shdmg at the surface and m tum produce comparatively small
deformation.

RELATIVE VISCOSITY

The suspension viscosity has very different flow behavior with
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Fig. 8. The ratio of force between deformable particle and rigid
particle, ®, as a function of deformapbility.
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that of flud medium smee the suspending particles’ nteractions
contribute very much to the bulk stress of suspension. In particular,
the pair mnteractions due to lubrication force between particles are
most significant at high particle volume fraction. Therefore, rela-
tive viscosity, as defined in (8), varies depending on the volume frac-
tion of particles, applied mean flow, viscosity of fluid medium, pro-
perties of suspending particles etc.

viscosity of suspension L
viscosity of flud medium w,,°

Van den Brule and Jongschaap [1991] approached the relative vis-
cosity of a Newtoruan flud by using stress expression for suspen-
sion proposed by Batchelor [1970]. As seen m (9) the suspension
stress T, for the overall suspension volume V has the contribution
of fluid medium and that of particle mteractions t,, so called as par-
ticle phase stress, after very small magnitude terms are neglected.
P 15 the pressure, T, 13 the deviatoric stress tensor of fluid me-
dwum and V) 1s the volume of suspended particles.

relative viscosity (K,) =

®

T, =\ljy_j2 (P8, T )V ) Jtav ©
In concentrated suspension the lubrication force between particles
1s most important and screens the long-range hydrodynamic forces
effectively. Only the short-range mteraction is thus considered m
the suspension stress to change the second term of (9) for a given
configuration, eg., simple cubic array or face centered array etc.
The stress due to particles’ pair mteraction m a concentrated system
1s therefore computed with

1 af a,
T! =\—,2F,. G (10)

where F* is the lubrication force between particle ¢ and [8, and
1?1 the vector connecting the center to center of particles ¢ and
B. Thus, lubrication force for a pair particle is used, m the previous
section, to predict the relative viscosity of suspension with deform-
able particles.

Inchudng the deformation effects which were presented only m
evaluating the mtegral J,, the lubrication force can be rewritten dif-
ferently incorporatmg the approximate equation of T,(ry, €) mto (6).
Therefore, the force between two particles in Generalized Newto-
rian fluids 1s

E=C0™ LTl =)= 2m 332 Bnlm 142 1Y2

i

C1:2(1 +n_nm_2mmnC. (11)

This expression will be used m calculation of a particle’s contribu-
tion to bulk stress m the followmng. Here m 1s the power of elastic
parameter, C 1s the coefficient of power and e 1s the unit vector. The
values of C and m can be found as listed m Table 1 from Figs. 6
and 7. Note that C=0.75, m=0 for ngid particles i1 Newtorian flud
and C=2.626, m=0 for ngid perticles m non-Newtoman flud with
shear ndex as 0.5. The relative velocity u can be expressed with
distance 1, macroscopic velocity gradient L and bulk rate of stran
tensor D as

u=1L-e=1(D: ee)e. 12)

Thus, particle phase stress (10) can be written with D after the above
velocity relation is substituted mto (12).
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Fig, 9. Simple aibic array of partides arranged with the prindpa
axes of deformation tensor. The bladk sphere is the refer-
ence to other surounding partides presented as semi-trans-
parent.

F_rA:cle-mKl-ma(r.(l-m)-2m+3)’2h(3y(.w-l)*2m+l)/2
Ay
n=nm _1+K1-m)
Dyere)” Ter ¢ (13)

For the particle n a simple cubic array, the orientation of packed
aray is aranged with principal axes of the rate of stram tensor as
seen m Fig. 9, saymg that the pure shearing deformation of cubic
array is considered here. In a given unit volume V, six particles sur-
round the reference particle as shown black in the center of the box.
Writing (13) for an approaching particle,

- 1- 1-m)-2m +3 3. =13+2m +1 1 1-, -
F1r1=C10 374 ma(n( m)=dm + )’?h( 2(m=1)+2m+ )/21. +( M)Dxl\lmelel- (14)

Similarly, other neighboring particles contribute to the overall stress
tensor: Summing up all the contributions of neighboring patticles
to estimate the stress tensor of a suspension aligned in a cubic airay,
(9) 1s smplified to (15} due to dommaing pure shearing motion
when instantaneous configuration of neighbors is known.

Tu=2("*mK*f’+%nZFm, ¥=Dn n: number density

Tll :2("“)/21{"(,[14'2-(’”l)ch(Ke)-ma('(l-M)-huzﬂ
h(Z;(m- 1+ 2m+1)’2r1+n(l-m)n,-y-nm] (15)

The distance r and number density n can be approximated as 2a
and 1/1° since the particles are so closely packed. Consequently, the
relative viscosity is expressed as

a Gr(l-m)-2m-1)2 (2~ 52
u~,=1+c2A(}-1) €, =20, A =Key"

= @ MT”O'“)'M -1v2
et [2<1—(¢/¢m)"3> 16)

$,,15 the maximum volume fraction of arangement. For the simple
cubic array it is 7/6=0.5236 and is m/3.ﬁ=0.7405 for hexagonal
arrangement. The coefficient of large bracket is changed for the dif-
ferent configurations of suspension, depending on how many parti-
cles approach together. As for the rigid particles, the coefficient of
bracket is37/16 for the simple cubic aray and it is changed to 3mf2/

80
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Fig. 10. The relative viscosity |1, of deformable and rigid particles
for Newtonian fluid medium for various volume fractions
with A=2.

16 for the hexagonal arangement [van den Brule, 1991]. The com-
parisons of effective viscosity of suspension between rigid particles
and deformable paticles is shown m Figs. 10 and 11 for the simple
cubic aray with Newtonian fluid medium as well as with non-New-
tonian fluid with shear mdex as 0.5 varying volume fraction. Here
m is taken as zero and C is taken as C; in Table 1. As discussed by

—+-n=0.5 rigid particle
8 & =05 delormable partici

e

0.4 044 048 052
°

Fig. 11. The redative visoosity L, of deformable and rigid partides
for non-Newtonian fluid medium with shear index as 0.5
for various volume fractions with A=2.

= Newlonian fluid

===« e Newionian fuid with shear index as 0.5

3 " . P

o 1 2 a 4

A

Fig. 12. The relative viscosity pi, of deformable particles with re-
spect to A at volume fraction=0.5.
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Tarzebska [19817], suspension of a Newtorsen flud has higher rela-
tive viscosity 1 a concentrated system because the suspension of
non-Newtornan fhud satisfying the power law has extensional pro-
perty at the surface of particle. The plots for deformable particles
are obtamned taking A as 2 for both fluid mediums, which 1s explic-
itly connected to deformability parameter 8. As seen in Fig. 8, @ is
changed less when the flud medium is non-Newtoran, explaining
that the relative viscosity is changed more for deformable particles
m a Newtoran fluid. The deformation of particles gives room geo-
metrically to move [Loewenberg and Hinch, 1996], when they meet
together, decreasing the relative viscosity. Fig. 12 confirms that the
deformation results in the decrease of relative viscosity as well as
that shear thmnmg 1s observed m the presence of deformable par-
ticles. As shear rate mcreases, the approachmg velocity 1s lugher
and higher to produce more deformation of particles so that pre-
vents the stickmg of particles and decreases the relative viscosity.

ACKNOWLEDGEMENT

S.-Y. Kang acknowledges the support for this work by BK21 pro-
gram and thanks for discussion to Dr. Jayaraman m Michigan State
Urnuversity.

REFERENCES

Araki, T. and White, J. L., “Shear Viscosity of Rubber Modified Ther-
moplastics: Dynamuically Vulcanized Thermoplastic Elastomers and
ABS Resins at Low Stress]’ Polymer Eng. Sci., 38, 590 (1998).

Abdou-Sabet, S., Pudyak, R. C. and Rader, C. P, “Dynamically Vulca-
nized Themmoplastic Elastomers,” Rubber Chemistry and Technol-
ogy, 69, 476 (1996).

Batchelor, G. K., “The Stress System in a Suspension of Force-Free Par-
ticles? J. Fluid Mech., 41, 545 (1970).

Ball, R. C. and Melrose, J. R., “The Pathological Behavior of Sheared
Hard-Spheres with Hydrodynamic Interactions)” Ewrophysics let-
ters, 32, 535 (1995).

Ball, R. C. and Melrose, J. R., “A Simulation Technique for Many
Spheres in Quasi-Static Motion Under Frame-invariant Pair Drag and

May, 2002

Brownian Forces]’ Phyisica 4,247, 444 (1997).

Catherall, A. A, Melrose, J. R. and Ball, R. C., “Shear Thickening and
Order-Disorder Effects in Concentrated Colloids at High Shear
Rates]’ J. Rheol., 44, 1 (2000).

Chnistensen, H., “Elastohydrodynamic Theory of Spherical Bodies in
Normal Approach.’ J. Lub. Tech., 92, 145 (1970).

Davis, R. H., Serayssol, J. and Hinch, E. I, “The Elastohydrodynamic
Collision of Two Spheres” J. Fhuid Mech., 163, 479 (1986).

Frankel, N. A. and Acrivos, A, “On the Viscosity of a Concentrated Sus-
pension of Solid Spheres)” Chesm. Eng. Seci., 22, 847 (1967).

Ha, I.-W. and Yang, S.-M., “Deformation and Breakup of Newtonian
and Non-Newtonian Conducting Drops in an Electric Field’ J. Fiuid
Mech., 405, 131 {2000).

Jarzebski, G. 1., “On the Effective Viscosity of Pseudoplastic Suspen-
sions]’ Rheol. Acta, 20,280 (1981).

Kim, S. W. and Chun, Y. H., “Barmier Property by Controlled Larminar
Marphology of LLDPEEVOH Blends,” Korean J. Chem. Eng., 16,
511{1999).

Landau, L. D. and Lifshitz, E. M., “Theory of Elasticity” 3“ ed. Perga-
mon Press, New York (1986).

Lee, J.-D,, So, J.-H. and Yang, S.-M., “Rheological Behavior and Sta-
bility of Concentrated Silical Suspensions)” J. Rheology, 43, 1117
(1999).

Loewenberg, M. and Hinch, E. J., “Numerical Simulation of a Concen-
trated Emulsion in Shear Flow’ J. Fluid Mech., 321, 395 (1996).

Moon, D. Y, Kworn, M. H. and Park, O. O., “Morphology Evolution in
PS/LDPE Blends in a Twin Screw Extruder: Effects of Compatibi-
lizer? Koreann J. Chem. Eng., 18,33 (2001).

Munstedt, H., “Rheology of Rubber Modified Polymer Melts)” Poym.
Eng. Sci., 21,259 (1981).

So, J-H,, Yang, S.--M. and Hyun, J. C., “Microstructure Evolution and
Rheological Responses of Hard Sphere Suspensions,” Chem. Eng.
Sei., 86, 2967 (2001).

Tanaka, N. and White, J. L., “A Cell Model Theory of the Shear Vis-
cosity of a Concentrated Suspension of Interacting Spheres in Non-
Newtonian Fluid’ J Non-Newtonian Fluid Mech., 7, 333 (1980).

Van den Brule, B. H. A. A and Jongschaap, R. J. I, “Modeling of Con-
centrated Suspensions’ J. Statistical Physics, 62, 1225 (1991).



