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Abstract-Lubrication theory is applied to compute the deformation of two approaching particles suspended in a 
Generalized Newtoi~ian fluid with linear elastic theory estimating defon~aation and force on the particles with respect 
to defom~ability ~. The relative viscosity of conce~trated suspension with defom~able parbcles in a Generalized New- 
toinan fluid is obtained for a simple cubic array configuration by using the results of deformahon and force for two 
particles. Since the deformahon of parhdes generates the freedom of moving particles geometrically, the suspension 
~a4th defon~aable parbcles shows shear rimming behavior. 
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INTRODUCTION 

The rheology ofhighly concentiated blends has been studied ex- 
perhnentally by many im~estigators [ivlunstedt, 1981; ElM et ai., 
1995; Abdou-Sabet et al., 1996; Araki and White, 1998; Kim and 
Chun, 1999; Moon et aI., 2001] to undez~tand the behavior of blend 
during the process. Howevel; a prominent lamer  to the use of poly- 
mer blends and composite materials is the lack of adeqL~te models 
that capture the complex interaction between microstmcture and 
rheology of these materials &ring processing. In determining the 
rheological property of polymer blends, the most significant fea, 
tures are hydrodynamic interaction between neighboring particles 
and deformation of pal~cles. Thus, we would like to focus on those 
two phenon:eila to establish a usefiaI model of suspension rhenlogy 
with defon~aable particles. 

Many im~estigators bare been working on undei~talc~ng the hy- 
dro@ilamic interactions of highly concentrated systems of  hard 
spheres. Since the hydrodynamic interactions between neighboring 
particles are governed by lubrication force, the relative viscosity of 
concenh-ated suspension with Newtonian fluid medium was devel- 
oped fi-om the rate of enelgy dissipation for two nearly touching 
spherical iigid particles taking the spherical cell around particles 
[FrankeI and Acrivos, 1967 ]. Jarzebski [1981 ] and Tanaka et aI. 
[1980] extended to non-Newtonial fluid medium using the sane 
method The stress between two particles was approximated as l:~es- 
sure distribuhon by Tanaka et aI. [1980] while s~ess was estimated 
as the shear contribution of defom~ation tensor in second invaziant 
by Jarzebski [1981] claiming the more importance of elongation. 
Jarzebski [1981 ] showed that the relative viscosity was lowered as 
shear index n ks decreased owing to the extensional motion of fluid 
at the surface of partMes. Recently, the rheologi~il behavior of con- 
cet~-ated suspension with iigid particles in Newtonian fluid was ex- 
amined with Stokesian dyi~mc simulations considerkg only lubfi- 
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cation force as the interactions of particles [Ball and Ivlekose, 1995, 
1997; CatheralI et ai., 2000] as well as were ix~esttgated expem-nen- 
tally by Lee et al. [ 1999] and So et al. [2001 ] showing the shear thick- 
ening behavior due to clusteiq_ng of particles caused by Iuhication 
force. 

Local volume averaging [Batcheloi; 1970] was used for averag- 
ing stresslet so as to esNnate the concei~-ated suspension viscosity 
for a stahc periodic configuration instead of spherical ceil approxi- 
mating the shesslet of suspension fi-om lubiication force and vector 
connecting center of two neighboring rigid parttcles [van den Bmle 
and Jongscbaap, 1991]. 

Suspended particles such as robber or conducting drop can be 
deformed by external force, e.g. hydrodyramic interaction between 
particles oz- electric field [Ha and Yang, 2000]. The defon~aation 
due to short range hy&odyna~aic force has been esthnated for elastic 
particles in Newtonian fluid medium by Chi-istensen [1970] and 
Davis et al. [1986] combined with Hertz contact theoly [Landau 
and Lifshitz, 1 986]. Different than the suspension of hard spheres, 
rheologica~y shear thitming behavior is observed for the suspen- 
sion of defon~aable particles since defom~ation alIows the mobility 
of particles to increase geometrically ['Lcewenberg and Hinch, 1996]. 

In this paper we employ the volume averaging method to under- 
stand the rheological behavior of concentrated suspension with de- 
fon~aable particles suspended in Newtonian as well as in non-New- 
t_onian fluid. Howevei; it may be desirable to accompIs the dyn- 
amic sknulahon of deformable particles to predict the relative vis- 
cosity; the computational ~ne is so tremendous that it will be worked 
on in the next papei: A periodic configuration ks therefore used in 
estimating the relative viscosity of suspension with deformable par- 
ticles. 

In the following section, lubrication force and deformability be- 
tween two robber particles are derived before calculating the rela- 
tive viscosity of suspension along with the biief description of num- 
erical scheme. Then the resLilts of numerical computation for two 
defom~able are presented for various shear indices and defom~abiI- 
ities 8. In the final section the relative viscosity of deformable p a -  
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Fig. 1. Schematic of two deformable partides. 

titles is estk-nated frolll the results of  previous section. 

LUBRICATION THEORY AND D E F O R M A B I L I T Y  

Two spheiicaI elastic particles with radius a are approaching each 
other as shown in Fig. 1. As they get dosez; the pressure between 
them is increased inducing the slronger s~ress on the surface of par- 
ticles. The curva~-e of defon-ned particle is approxk-nately expressed 
a s  

.2 
z(r,t) =h(t) +~a +d(r,t) (1) 

Here h(t) ks the hypothetical &stance of two defon-nable particles 
on the line counectmg the centez's of particles shown as a solid line. 
In other words, it is the distance of two parttcles assuming no de- 
formation occurs. For defon-aable particles, vaiable d(i; t) is deter- 
mined by its elastic properties, e.g. Poisson ratio v and Young's mod- 
ulus E. The total particle defom~ation d in nan-ow gaps between two 
approaching rubber particles suspended in Generalized Newtonian 
fluid is evaluated as follows with the Hertz contact theory of linear 
elasticity. 

k=d=sJ,(R,n,8),  R -  r 
(ha) ~ 

S,(R,n,8) =2 "+' J~ i 1 +R,~/2 +A(R, 8)]dR' (b(R,~)d~ 
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nation of two physical phenomena, i.e. lubrication effect and elastic 
properties, allows us evaluate the deformation. By the coupling of 
continuity and momen~-n equation, the well-known lubz-ication 
equation for the gap of  two particles is expressed as 

Oz 1 o r  3Op] 
at  - ' z  rl:l-J (5)  

Since the deformation d(i; t) is incozporated in curvature equation 
as (1), defom~ation owing to elasticity and lubiication force can be 
combined into the equabon through (5). The force F on the two de- 
fon-nable particles is es~-nated fi-on~ the stress distribution obtained 
from (5). 

l-3n 3+n l-n 

F =J'o o=(2r~)z& = 2rtKu~hTaT (~) ~ J=(n, 8) 

( 2n 1 R , 
1 +~ dR ]RdR (6) J~(n,8) = ~ - n  [ i +Ra/2 +A(R,,8)] ~ j 

In evaluating normal s~ress (~=, only pressure P is mcluded since 
the magnitude of graclient of axial direction vebcity w with respect 
to z is much smaller, e.g. P--O(h -2) and (~v/Oz)--O(h -1) for Newto- 
nian fluid The force equation is reduced to (7) with J2=3/4 when 
the particles are iigid and fluid medium is Newtonian, implying 
that the magnitude of force is strongly dependent on the gap size h. 

F 3 ~u 

A complete solution of the lubrication equation coupled with elas- 
ticity theory can be evaluated by nurnencaI methcx:Is, e.g. finite dif- 
ference, finite element etc., as a function of Nne. In this work, the 
computation of instant defom~ation and force acting on the surface 
of deformed particles is enough to predict the relative viscosity for 
a given configuration. Therefore, we calculated the d(r) with the 
pressure ds obtained h-ore two approaching rigid spheres 
as a f~'st step, considerkag the left side of (5) as the relative velocity 
of two particles. Consecutively, the newly obtained pressure dis~i- 
b~aon P(r) h-ore the previous step is used for the evaluation of d(r). 
This procedG-e is repeated until d(r) and P are conveiged Once num- 
ez-icaUy conveIged d(r) and P ks computed, the lubrication force writ- 
ten in (6) is es~nated numerically. Romberg integration is used to 
calculate J~ mad J2precisely, changing vm-iables to avoid the singu- 
larity due to integrand. 

(2) 

where 8 is the deformability of particle and is defined as 

6 = 2(~ +~ mOKffa<~ +~ m, 9 = 2( 1 - v  ~) (3) 
h ~ ~E 

where K ks the consistent coefficient of power law fluid, n is the 
shear index and u is the relative velocity of two particles. The fimc- 
tion (~ in J~ involves a complete elliptic integral of lust kind and is 
given as follows. 

,(a4) =_LJA_%L]  
+R L(G +R)q (4) 

The bracketed integration term m (2)corresponds to the s~ress dis~- 
bution over the surface at time t, which ks detem~ined h-ore the hy- 
drodynamic interaction of two partMes. As seen in (2), the combi- 

SIMLrLATION RESULTS 

The dislfibution of particle curvature, int~ration J2 and lubz-ica- 
tion forces are computed for Newtonian fluid and a non-Newto- 
nian fluid satisfying power law with shear index as 0.5, vaying de- 
fon-nability. In Figs. 2 and 4, surface cm~a~-e in the raclial direc- 
tion is plotted for several elastic parameters along with the pressure 
dis~ibutions between two particles shown m Fig. 3 and 5. More 
defon-nation occurs as defon-nability inca-eases. About 40% of gap 
size h is deformed for 8=0.1, whereas almost no deformation is ob- 
served for 8~104 as seen in Fig. 2. It is also shown that the most 
deformation occurs at R=0, where the highest slress is applied, and 
the extent of deformation is reduced as one moves along the radial 
direction. The pressure ds plots confmn this trend show- 
ing that the pressures at the center are distributed discretely while 
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Fig. 2. The distribution of palticle curvature with Newtonian fluid 
medium. The lines have different deformability 6 as shown 
in legend. 
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Fig. 3. t5-essure dislribution cm'ves along the surface of deform- 
able pal~icle suspended in Newtonian fluid for different de- 
fornmbility ~. Scaled pressure YI is defined as Ph2/gua. 
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t5"essm'e dis~-ibution curves along the surface of deform- 
able particle suspended in non-Newtonian fluid with shear 
index as 0.5 for different deformability 6. Sealed pressure 
FI is defined as PhZ~S/KuOSa ~ 
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Fig. 6. J2 wilt,  respect to deformability 6 for Ne~mnian fluid me- 
dium. Solid line is the trend line expressed ~ t h  power law. 
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Fig. 4. The distribution of particle curvatm'e with non-Newtonian 
fluid medium ~ t h  shear index as 0.5. The lines have dif- 
ferent deformability 6 as shown in legend. 
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Fig. 7. J2 with respect to deformability 6 for non-Ne~onian  fluid 
medium with shear index as 0.5. Solid line is the Irend line 
expressed with power law. 

they are convelged to almost same as R increases. Note that the pres- 
sure is decreased as the deformation increases and deformability 
increases. The stress acting on the surface of particles is already 
relaxed into the deformation resultitg in letting gap size bigger. The 
pressure is therefore lowered as seen in Figs. 3 and 5 owing to high 

deformation of surface 
The most significant part of Iubficafion force is the computation 

of integration J2 as shown m Figs. 6 and 7. The analytical J2 for a 
cigid body in a Newtonian fluid is 075 as seen in (7) hnplicitly Since 
the calculated force is used m predicting relative viscosity, the cor- 
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Table 1. Power and coefficient for the trend line of J2 in express- 
ing J2=C8 -~. Co is the value of J2 and m=0 when particles 
are rigid 

n 1 0.5 

m 0.147 0.072 
C 0.399 1.955 
Co 0.750 2.626 

relahon Auction between J2 and deformability is necessary on the 
basis of simulation results to obtain tile proper rheologicaI relatjon- 
ship of suspmsion with defomlable particles such as polymer blealds. 
As defonqaability increases, J2 is dec-eased following a power law. 
Tile power and coetIicients are listed in Table 1. Tile solid lines in 
Figs. 6 and 7 represent trend lines by power laws. Lubncahon force 
is proportional to h 48s for defonnable particles in Newtonian fluid 
and is h 412 for defonnable particles in non-Newtonian power law 
fluid with shear index as 0.5 while it is h -~ and h -~ respectively 
for rigid particles. The dependency on h is sho~xrn slightly weaker 
for deformable parhcles because force depends on h as we11 as de- 
fonqaed curvature of surface in integration J> 

It ks worthwhile to see the effect of defonqaation on tile lub:-ica, 
tion force by a force ratio �9 defined as the ratio of force with de- 
fonqaable particles and force with rigid particles. As r @arts  fi-om 
unity, the force acting on the surface of defonnable particles ks less 
than that on the rigid particles. In other words, the deformation cc- 
cuning generates more space between two particles resulting in less 
pressvtre in the gap. Since the deformability 8 gets bigger and big- 
get; the force ratio Cb is dec-eased as shown in Fig. 8. For the non- 
Newtonian fluid medium with n=0.5, �9 is changed about 15%, 
whereas it is varied more than 25% for a Newtonian flui& It is noted 
that the particles in Newtonian fluid medium are more impacted 
by defonnation. Non-Newtonian fluids following the power law 
int:msically have extensional morion during tile process, which ::lay 
create sliding at tile surface and in turn prcxtuce comp~-atively small 
deformation. 

R E L A T I V E  V I S C O S I T Y  

Tile suspension viscosity has very diffe, ent flow behavior with 
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0.9 ~ " ' " ' " " ~ " "  ' "'"!,....=. 

e . . . . . . .  

0 8  

~ r'.,1 -. II �9 .r,=O.5 

0.~ 0.2 0 . 3  

8 

Fig. 8. The latio of force between deformable particle and rigid 
particle, ~ ,  as a function of deformability. 
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ttmt of fluid medium since tile suspending particles' interactions 
contribute very much to the bulk stress of suspension. In particular, 
tile pair interactions due to lubiication force between particles are 
most significant at high particle volume fraction. Therefore, Ma- 
bye viscosity, as defined in (8), varies depending on the volume fi'ac- 
tion of particles, applied mean flo~xr viscosity of fluid medium, pro- 
perlies of  suspending particles etc. 

viscosity of suspension g (8) 
relative viscosity (~t,) -viscosity of fluid medium g,,, 

Van den BMe and Jongsdlaap [1991] approached the relative vis- 
cosity of a Newtonian fluid by using stress expression for suspen- 
sion proposed by Batchelor [1970]. As seen in (9) tile suspension 
stress T~j for tile overall suspension voDane V has the contribution 
of fluid medium and that of pmicle interactions tv, so called as par- 
tide phase stress, after very small magnitude temls are neglected. 
P is the pressure, T~A,~ ) is tile deviatoric stress tensor of fluid me- 
dium and V0 is the volume of suspended paracles. 

Tv = lv_sl, ( -  P~5~j + T,~<,,,))dV + 1 ~  !t~jdV (9) 

In concentrated suspension tile lubz-ication force be~veen particles 
is most impo~nt and screens the long-range hydrodynamic forces 
effectively. Only the short-rage interaction is thus comidered in 
tile suspension stress to change the second tenn of (9) for a given 
configuration, e.g., simple cubic array or face centered array etc. 
The stress due to particles' pair interaction in a concentrated system 
is therefore computed with 

r~ = IEF?e:?fe (10) 

where F~ ~ is the lubrication force between particle cz and [3, and 
i) ~ is the vector connecting tile center to center of particles c* and 
[3. Thus, lubz-ication force for a pair particle is used, in the previous 
section, to predict the relative viscosity of suspension ruth defonn- 
able partlcles. 

Includitg the defon-nation effects which were presented oniy in 
evaluating tile integral J2, tile lub:ication force can be rewritten dif- 
ferently incorporating the approximate equation of J2(n, e) into (6). 
Therefore, tile force between two particles in Generalized Newto- 
nian fluids is 

F, = C, 0-'~ K l - '~a <"<l -~,)-~, +3~h ~.(,~ -l~+~, +l>,:u ~-~,% 

C, =2 (' +"-"'~-='~ >eriC. (1 I) 

This expression wiII be used in calculation of a particle's contribu- 
tion to bulk stress in the fo]lo~x&lg. Here :n is the power of elastic 
p~-amete:; C is the coefficient of power and e is the utfit vectoz: The 
values of C and :n can be found as listed in Table 1 fi-onl Figs. 6 
and 7. Note that C=0.75, m=0 for rigid particles in Newtonian fluid 
and C~2.626, m=0 for zigid particles in non-Newtonian fluid with 
shear index as 0.5. The relative velocity u can be expressed with 
distance r, macroscopic velocity gradient L and bulk rate of strain 
tensor D as 

u=rL-e-:r(D - ee)e. (12) 

Thus, particle phase stress (10) can be written with D after the almve 
velocity relation is substituted into (12). 
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Fig. 9. Simple cubic array of partidcs a r r a n ~ d  w ~  the prindpai 
axes of deformation tenser. The black sphere is the raer- 
r to other mrrounding parfides presented as soad-trm~s- 
parent. 

F i r  j = C 1  0 - i n k  I - m  a ( ~ l -  m) - 2m + 3)v'211(3 ,d;~ - l)§ + 1),'2 

(D~r162162 +~a -~) es (13) 

For the pazticle in a simple cubic mray, the orientation of packed 
mTay is mTanged with prindpal axes of  the rate ofmahl  tensor as 
seen in Fig. 9, saying that thepum shearing defommtion of cubic 
raT',e] is considered here. In a given unit volmne V, six p~wticles sur- 
round the reference p~ticle as shown black in the center of the box. 
Writing (13) for an approaching particle, 

Fir I =C10-mKi-~a(n(1-~)-~§247247 (14) 

Similarly, other neighboring particles coim?onte to the overall mess 
tensor Summing up all the contributions ofneightx~ag particles 
to estimate the stress tensor of  a suspension aligned in acubic anW, 
(9) is simplified to (15) due to dominaiug pure shearing motion 
when instantaneous configuration ofneighbot~ is kno~vu. 

1 
Tn =2("+~nlZ'F " + ~n~F:'~, y=Dll n: tmmbcr density 

Tn = 2("+~)~K'{[ 1+ 2- ("+ ~ C~ (K0)- % (~~ ~)- ~§ ~2 
h (~'~- ')+ ~+ ~2r~+"(*-~)n'?-"" ] (15) 

The distmce r and nmnber dens~ n can be al~aroxinmted as 2a 
and 1/? since the pm'ticles are so closely packed, Consequently, the 
relatNe viscosity is expressed as 

]- [ ~ / ( h  "l 1/3 "~ 3n(l-m)-2m-1)/2 

=1+C A -~' . . . . . .  " (16) L2(I-(r 
<~,. is the maximum volume fiaction of an'mlgemenL For the simple 
cubic an'ay it is ~6=0.5236 mid is ~3,4t2=0.7405 for hexagonal 
an~agemert. The coefficient o f  large bracket is changed for the dif- 
ferent configurations of  suspension, depending on how mmy parti- 
cles approach togefllen As for file rigid particles, the coefficient of 
bracket is 3rd16 for the simple cubic atrgr and it is changed to 3mr2/ 
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Fig. 10. The relative viscosity g, ~ deformable and rigid particles 
for Nevv~oni~m fluid medkmt for various volume fractions 
with A=2.  

16 for the hexagonal ~rangement [van den Bmle, 1991]. The com- 
parisons of  effective viscosity of suspension between rigid particles 
mid deformable particles is show~l in Figs. 10 and 11 for the simple 
cubic army with Newtonian fluid medium as well as with non-New- 
tonal  fluid with she~" index as 0.5 v~ying vohmle fi'action. Here 
in is taken as zero mid C is taken as Co in Table 1. As discussed by 

G 

�9 a~ 0 ~ de4c3clr~ble l~ar llc ~ 

. . I - -  

j �9 �9 
- - , n  . . . .  �9 - _ _ - -  t -  

0 
0 . 4  0 . 4 , 1  0 , 1 8  0 5 2  

0 

F i ~  1 t  The rdative viscosity p~ ~ deformable and r ind  pal'tides 
for non-Newtonian fluid medkml  with shear index as 0.5 
for various volmne fractions with A=2.  
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Fig. 12. The rdative viscosity la~ of deformable pin, tides with re- 
sl~ ect to A at vohnne fraction= 0.5. 
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Jarzebski [1981], suspension of a Newtonia~ fluid has higher rela- 
five viscosity in a concentrated system because the suspension of 
non-Newtonian fluid satisfying the power law has exte,~sio~aI pro- 
perty at the surface of particle. The plots for defonnable particles 
are obtained taking A as 2 for both fluid mediums, which is explic- 
itly connected to defonuability pa-mueter 8. As seen in Fig. 8, �9 is 
changed less when the fluid medium is non-Newtonian, explaining 
that the Mative viscosity is ct~qged more for defon-aable particles 
in a Newto~fia~ fluid. The defonuation of particles gives room geo- 
metrically to move [Lcewenbelg and Hinch, 1996], when they meet 
together, decreasing the relative viscosity. Fig. 12 confnans that the 
defonnation results in the decrease of relative viscosity as well as 
that shear thitmitg is observed in the presence of defonuable par- 
tides. As shear rate increases, the approaching velocity is higher 
and higher to prcduce more deformation of partMes so that pre- 
vents the sticking of particles and decreases the relative viscosity. 
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